Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Radiol Prot ; 43(3)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678167

RESUMO

Life cycle assessment (LCA) is a modelling technique used to determine the cradle-to-grave environmental and human health impacts from the production of a good or the provision of a service. Radiological protection may benefit from employing tools like LCA to obtain a broader perspective and enable comparison with analyses of non-radiological systems. Despite structural similarities to other well-established decision-aiding techniques (DATs), the impact assessment within LCA (i.e. LCIA) is not commonly used in the optimisation of radiological protection process. This paper provides a brief review of LCA, including LCIA, along with more traditional DATs (such as multi-attribute utility analysis) used in the optimisation process for comparison. Basic concrete shielding was considered as a simple, illustrative example; concrete attenuates emissions from a radiation source but is also associated with a financial cost as well as costs with respect to energy, material, and water use. LCA offers quantification of these and other key resources (termed 'impact categories'). Ultimately, we offer that, depending on the circumstance, LCA can be a useful tool in radiological protection decision-making, complementing existing techniques.


Assuntos
Proteção Radiológica , Humanos , Animais , Água , Estágios do Ciclo de Vida
2.
Environ Toxicol Chem ; 42(11): 2412-2421, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477461

RESUMO

A variety of processes, both natural and anthropogenic, can have a negative impact on surface waters, which in turn can be detrimental to human and environmental health. Few studies have considered the ecotoxicological impacts of concurrently occurring contaminants, and that is particularly true for mixtures that include contaminants of emerging concern (CEC). Motivated by this knowledge gap, the present study considers the potential ecotoxicity of environmentally relevant contaminants in the representative aquatic plant Lemna minor (common duckweed), a model organism. More specifically, biological effects associated with exposure of L. minor to a ubiquitous radionuclide (uranium [U]) and a fluorinated organic compound (perfluorooctanoic acid [PFOA], considered a CEC), alone and in combination, were monitored under controlled laboratory conditions. Lemna minor was grown for 5 days in small, aerated containers. Each treatment consisted of four replicates with seven plants each. Treatments were 0, 0.3, and 3 ppb PFOA; 0, 0.5, and 5 ppb U; and combinations of these. Plants were observed daily for frond number and signs of chlorosis and necrosis. Other biological endpoints examined at the conclusion of the experiment were chlorophyll content and antioxidant capacity. In single-exposure experiments, a slight stimulatory effect was observed on frond number at 0.3 ppb PFOA, whereas both concentrations of U had a detrimental effect on frond number. In the dual-exposure experiment, the combinations with 5 ppb U also had a detrimental effect on frond number. Results for chlorophyll content and antioxidant capacity were less meaningful, suggesting that environmentally relevant concentrations of PFOA and U have only subtle effects on L. minor growth and health status. Environ Toxicol Chem 2023;42:2412-2421. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Araceae , Urânio , Humanos , Urânio/toxicidade , Antioxidantes , Plantas , Clorofila
4.
Environ Sci Technol ; 57(8): 3187-3197, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36799656

RESUMO

Radiological contamination of coastal habitats poses potential risk for native fauna, but the bioavailability of aqueous radium (Ra) and other dissolved metals to marine bivalves remains unclear. This study was the first to examine the tissue-specific disposition of aqueous 226Ra in a coastal mussel, specifically the Atlantic ribbed mussel Geukensia demissa. Most organ groups reached steady-state concentrations within 7 days during experimental exposure, with an average uptake rate constant of 0.0013 mL g-1 d-1. When moved to Ra-free synthetic seawater, mussels rapidly eliminated aqueous 226Ra (average elimination rate constant 1.56 d-1). The biological half-life for aqueous 226Ra ranged from 8.9 h for the gills and labial palps to 15.4 h for the muscle. Although previous field studies have demonstrated notable 226Ra accumulation in the soft tissues of marine mussels and that, for freshwater mussels, tissue-incorporated 226Ra derives primarily from the aqueous phase, our tissue-specific bioconcentration factors (BCFs) were on the order of (8.3 ± 1.5) × 10-4 indicating low accumulation potential of aqueous 226Ra in estuarine mussels. This suggests marine and estuarine mussels obtain 226Ra from an alternate route, such as particulate-sorbed Ra ingested during filter-feeding or from a contaminated food source.


Assuntos
Bivalves , Rádio (Elemento) , Animais , Toxicocinética , Água
5.
J Environ Qual ; 52(1): 199-206, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36345599

RESUMO

Perfluorooctanoic acid (PFOA), a surfactant, is a member of the perfluoroalkyl acids (PFAAs) family and is a contaminant of emerging concern for human and environmental health. Perfluorooctanoic acid is a persistent organic pollutant, but currently little is known about (a) the potential ecological and toxicological effects of PFOA and (b) how PFOA moves in the environment. This study uses a radiotracer (14 C-PFOA) to study the uptake and translocation of PFOA in hydroponically grown brown mustard [Brassica juncea (L.) Czern.], a representative crop species. Plants were exposed in quadruplicate over the course of 7 d (with plants sampled on Days 4 and 7) to PFOA concentrations of 0, 1, 5, 10, and 15 mg L-1 . Uptake was quantified via liquid scintillation counting of samples from the nutrient solution, roots, stems, and leaves. Transfer factors (roots to shoots) ranged from 0.15 to 4.73 kg kg-1 . Bioconcentration factors (solution to plant) ranged from 0.36 to 62.29 L kg-1 . Factors were influenced by plant compartment, day sampled, and treatment level.


Assuntos
Fluorocarbonos , Mostardeira , Humanos , Fluorocarbonos/farmacologia , Caprilatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...